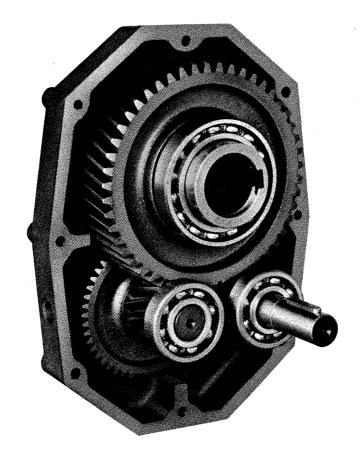
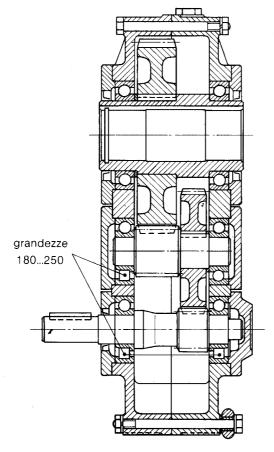
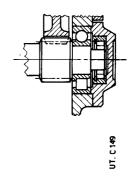
Serie P





Riduttori pendolari


Indice

1 - Simboli e unità di misura	4
2 - Caratteristiche	5
3 - Designazione	5
4 - Fattore di servizio fs	5
5 - Scelta	 6
6 - Potenze e momenti torcenti nominali	 7
7 - Carichi radiali Fr1 sull'estremità d'albero veloce	. 9
8 - Esecuzioni, dimensioni, forme costruttive e quantità d'olio	10
9 - Dettagli costruttivi e funzionali	11
10 - Installazione e manutenzione	 12
11 - Esecuzioni speciali ed accessori	14
12 - Formule tecniche	15

dispositivo antiretro

1 - Simboli e unità di misura

Simboli in ordine alfabetico, con relative unità di misura, impiegati nel catalogo e nelle formule.

Simbolo	Espressione]	Unità di misura	- 1 T	Note
		Nel catalogo	Nelle	formule	e de la companya del companya de la companya del companya de la co
		e e e	Sistema Tecnico	Sistema SI 1)	
	dimensioni, quote	mm	_	_	
а	accelerazione		m	/s ²	
d	diametro		n	n	
f	frequenza	Hz	· H	lz	· · · · · · · · · · · · · · · · · · ·
fs	fattore di servizio)		
ft-	fattore termico		11 X Z		
F	forza		kgf	N 2)	1 kgf ≈ 9,81 N ≈ 0,981 daN
F _r	carico radiale	daN		-	
Fa	carico assiale	daN	-	-	
g	accelerazione di gravità		m,	/s²	valore normale 9,81 m/s ²
G	peso (forza peso)		kgf	N.	
Gd ²	momento dinamico		kgf m²		
1	rapporto di trasmissione			The Committee of the Co	$i = \frac{n_1}{n_2}$
1	corrente elettrica			4	
J	momento d'inerzia	kg m²		kg m²	
L _h	durata dei cuscinetti	h	-	<u> </u>	
m	massa .	kg	kgf s²/m	kg ³⁾	
M	momento torcente	daN m	kgf m	N m	1 kgf m ≈ 9,81 N m ≈ 0,981 daN
n	velocità angolare	giri/min	giri/min		1 giro/min ≈ 0,105 rad/s
P	potenza	kW	CV	W	1 CV ≈ 736 W ≈ 0,736 kW
<i>P</i> t	potenza termica	kW		_	
r.	raggio		n	n	
R	rapporto di variazione				$R = \frac{n_{2 \text{ max}}}{n_{2 \text{ min}}}$
S	spazio		n	n	
t .	temperatura Celsius	°C		_	
t	tempo	s min h d		3	1 min = 60 s 1 h = 60 min = 3 600 s 1 d = 24 h = 86 400 s
U	tensione elettrica	V	V		
ν	velocità		m	/s	
W	lavoro, energia		kgf m	J ⁴⁾	
Z .	frequenza di avviamento	avv./h			
α	accelerazione angolare		rad	/s ²	
η	rendimento	18			
η,	rendimento statico				
μ	coefficiente di attrito				
φ	angolo piano	٥	rad		1 giro = 2π rad 1° = $\frac{\pi}{180}$ rad
ω	velocità angolare				
ω	velocita aligolare	_	_	rad/ s	1 rad/s ≈ 9,55 giri/min

Indici aggiuntivi e altri segni

Indice	Espressione
max min N 1 2 ÷ ≈	massimo minimo nominale relativo all'asse veloce (entrata) relativo all'asse lento (uscita) da a uguale a circa maggiore o uguale a minore o uguale a

1) SI è la sigla del Sistema Internazionale di Unità, definito ed approvato dalla Conferenza generale dei Pesi e Misure quale unico sistema di unità di misura. Ved. UNI 10 003-74 (DIN 1 301-74, NF X 02.004, BS 3 763-70, ISO 1 000-73).

UNI: Ente Nazionale Italiano di Unificazione.

DIN: Deutschen Normenausschuss (DNA).

NF: Association Française de Normalisation (AFNOR).

BS: British Standards Institution (BSI).

ISO: International Organization for Standardization.

2) Il newton [N] è la forza che imprime a un corpo di massa 1 kg l'accelerazione di 1 m/s².

3) Il kilogrammo [kg] è la massa del campione conservato a Sèvres (ovvero di 1 dm³ di acqua distillata a 4 °C).

4) Il joule [J] è il lavoro compiuto dalla forza di 1 N quando si sposta di 1 m.

2 - Caratteristiche

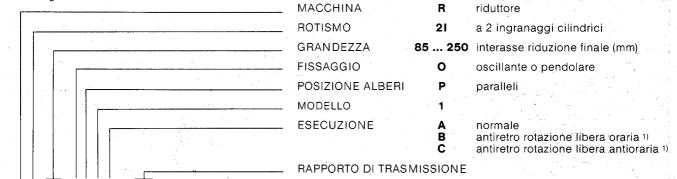
Rotismo:

- a 2 ingranaggi cilindrici in 7 grandezze con interasse riduzione finale 85 ... 250 mm e rapporti di trasmissione nominali 16, 20, 25 (10 per grandezze 105 ... 180);
- ingranaggi di acciaio 16 CrNi 4 o 20 MnCr5 (secondo la grandezza) e 18 NiCrMo 5 UNI 7846-78 cementati/temprati;
- dentatura elicoidale con profilo rasato o rettificato;
- capacità di carico del rotismo calcolata a rottura e a pressione superficiale.

Particolarità costruttive:

- particolare forma costruttiva che permette di realizzare applicazioni economiche, rapide e con il minimo ingombro;
- calettamento diretto sull'albero da comandare, fissaggio mediante rosetta in testa e braccio di reazione (questo serve anche a tendere le cinghie eliminando le slitte del motore);
- alberi lento e veloce paralleli;
- albero lento cavo con cava linguetta e gola anello elastico per estrazione;
- estremità d'albero veloce con linguetta e foro filettato in testa;
- cuscinetti volventi a sfere e a rulli cilindrici;
- lubrificazione a bagno d'olio con tappo carico con sfiato, scarico e livello; tenuta stagna;
- carcassa di ghisa Ĝ 20 UNI 5007;
- i riduttori sono tutti predisposti per l'applicazione del dispositivo antiretro;
- esecuzioni speciali ed accessori (cap. 11).

Impiego:


I riduttori pendolari sono particolarmente impiegati per il comando di trasportatori a nastro; sono ugualmente impiegati per il comando di vagli rotativi, coclee, miscelatori, sgretolatori, elevatori, e di tutte quelle macchine per le quali è possibile il montaggio pendolare ed è necessaria la trasmissione a cinghie tra motore e riduttore.

Norme specifiche:

- rapporti di trasmissione nominali secondo i numeri normali UNI 2016 (DIN 323-74, NF,X 01.001, BS 2045-65, ISO 3-73);
- profilo dentatura secondo UNI 6587-69 (DIN 867-74, NF E 23.011, BS 436.2-70, ISO 53-74); estremità d'albero cilindriche secondo UNI 6397-68 (DIN 748, NF E 22.051, BS 4506-70, ISO/R 775-69) con foro filettato in testa UNI 3221 (DIN 332 Bl. 2-70, NF E 22.056) escluso corrispondenza d-D;
- linguette UNI 6604-69 (DIN 6885 Bl. 1-68, NF E 27.656 e 22.175, BS 4235.1-72, ISO/R 773-69);
- capacità di carico verificata secondo UNI, DIN, AFNOR, AGMA, progetto di raccomandazione ISO per una durata di funzionamento ≥ 25 000 h.

3 - Designazione

La designazione dei riduttori pendolari, effettuata secondo la classificazione mnemonica e numerica, è composta secondo lo schema seguente:

Es.: R 21105 O P1 A / 15,8

La designazione va completata con l'indicazione della velocità entrata n_1 e della forma costruttiva solo però se **diversa** dalle forme costruttive **normali** (asse lento orizzontale). Es.: R 21180 OP1A / 17,4, $n_1 = 560$ giri/min, forma costruttiva V1.

Quando il riduttore è richiesto in esecuzione diversa da quella sopraindicata, precisarlo per esteso (cap. 11).

4 - Fattore di servizio fs

Il fattore di servizio fs tiene conto delle diverse condizioni di funzionamento (natura del carico, durata, frequenza di avviamento, altre considerazioni) alle quali può essere sottoposto il riduttore e di cui bisogna tener conto nei calcoli di scelta e e di verifica del riduttore stesso.

Le potenze e i momenti torcenti indicati a catalogo sono nominali (cioè validi per fs = 1).

Fattore di servizio in funzione della natura del carico e della durata di funzionamento (questo valore va moltiplicato per quello della tabella a fianco).

Fattore di servizio in funzione della frequenza di avviamento riferita alla natura del carico.

3.4	Natura del carico della macchina azionata	Durata di funzionamento [h]							
Rif.	Descrizione	6 300 2 h/d	12 500 4 h/d	25 000 8 h/d	50 000 16 h/d	80 000 24 h/d			
а	Uniforme	0,8	0,9	1	1,18	1,32			
b	Sovraccarichi moderati (entità 1,6 volte il carico normale)	 	1,12	1,25	1,5	: -1,7			
С	Sovraccarichi forti (entità 2,5 volte il carico normale)	1,18	1,32	1,5	1,8	2			

Rif. carico	£ 1441	Frequenza di avviamento z [avv./h]											
	2	4	8	16	32	63	125	250					
а	.1	1,06	1,12	1,18	1,25	1,32	1,4	1,5					
b	1	1	1,06	1,12	1,18	1,25.	1,32	1,4					
С	1	1	1	1,06	.1,12	1,18	1,25	1,32					

4 - Fattore di servizio fs

Precisazioni e considerazioni sul fattore di servizio.

I valori di fs sopraindicati, valgono per:

- motore elettrico con rotore a gabbia, inserzione diretta fino a 9,2 kW, stella-triangolo per potenze superiori; per inserzione diretta oltre 9,2 kW o per motori autofrenanti, scegliere fs in base a una frequenza di avviamento doppia di quella effettiva; per motore a scoppio moltiplicare fs per 1,25 (pluricilindro), 1,5 (monocilindro);
- durata massima dei sovraccarichi 15 s, degli avviamenti 3 s; se superiore e/o con notevole effetto d'urto interpellarci;
- un numero intero di cicli di sovraccarico (o di avviamento) completati non esattamene in 1, 2, 3 o 4 giri dell'albero lento, se esattamente considerare che il sovraccarico agisca continuamente;
- grado di affidabilità normale; se elevato (difficoltà notevole di manutenzione, grande importanza del riduttore nel ciclo produttivo, sicurezza per le persone, ecc.) moltiplicare fs per 1,25 \div 1,4.

Motori con momento di spunto non superiore a quello nominale (inserzione stella-triangolo, certi tipi a corrente continua e monofase), determinati sistemi di collegamento del riduttore al motore e alla macchina azionata (giunti elastici, centrifughi, oleodinamici, di sicurezza, frizioni) influiscono favorevolmente sul fattore di servizio, permettendo in certi casi di funzionamento gravoso di ridurlo; in caso di necessità interpellarci.

5 - Scelta

Determinazione grandezza riduttore

- Disporre dei dati necessari: potenza P_2 richiesta all'uscita del riduttore, velocità angolari n_2 e n_1 , condizioni di funzionamento (natura del carico, durata, frequenza di avviamento z, altre considerazioni) riferendosi al cap. 4.
- Determinare il fattore di servizio fs in base alle condizioni di funzionamento (cap. 4).
- Scegliere la grandezza riduttore (contemporaneamente anche il rapporto di trasmissione i) in base a n_2 , n_1 e ad una potenza P_{N2} uguale o maggiore a $P_2 \cdot fs$ (cap. 6).
- Calcolare la potenza P₁ richiesta all'entrata del riduttore con la formula -, dove $\eta = 0.96$ è il rendimento del riduttore (cap.9). Quando per motivi di normalizzazione del motore, risulta (considerato l'eventuale rendimento motore/riduttore) una potenza P_1 applicata all'entrata del riduttore maggiore di quella richiesta, deve essere certo che la maggior potenza applicata non sarà mai richiesta e la frequenza di avviamento z è talmente bassa da non influire sul fattore di servizio (cap. 4).

P₁ applicata Altrimenti per la scelta moltiplicare la P_{N2} per il rapporto P₁ richiesta

l calcoli possono essere effettuati in base ai momenti torcenti, anziché alle potenze; anzi per bassi valori di n_2 è preferibile

Verifiche

- $\dot{-}$ Verificare il carico radiale F_{r1} , secondo le istruzioni e i valori del cap. 7 e 10 («trasmissioni a cinghia e carichi radiali»).
- Quando si dispone del diagramma di carico e/o si hanno sovraccarichi dovuti a avviamenti a pieno carico (specialmente per elevate inerzie e bassi rapporti di trasmissione), frenature, urti, casi di riduttori in cui l'asse lento diventa motore per effetto delle inerzie della macchina azionata, potenza applicata superiore a quella richiesta, altre cause statiche o dinamiche - verificare che il massimo picco di momento torcente (cap. 9) sia sempre inferiore a $2 \cdot M_{N2}$, se superiore o non valutabile installare nei suddetti casi - dispositivi di sicurezza in modo da non superare mai $2 \cdot M_{N2}$.
- Per riduttori con dispositivo antiretro aventi $i_N=10$ o bassi valori di fs, verificare la capacità di carico del dispositivo antiretro secondo i valori del cap. 9.

Designazione per l'ordinazione

Per l'ordinazione è necessario completare la designazione del riduttore come indicato nel cap. 3. Pertanto occorre precisare: esecuzione (cap. 8); velocità entrata n_1 se maggiore di 1 400 giri/min o minore di 355 giri/min o se la forma costruttiva è V1 o V3; eventuali esecuzioni speciali (cap. 11).

R 2I 210 OP1 B/25 sopporto motore e braccio di reazione elastico R 2I 210 OP1 A/17,4 $n_1 = 560$ giri/min, forma costruttiva V1.

Considerazioni per la scelta

La potenza del motore, considerato il rendimento del riduttore e di eventuali altre trasmissioni, deve essere il più possibile uguale alla potenza richiesta dalla macchina azionata e, pertanto, va determinata il più esattamente possibile

La potenza richiesta dalla macchina può essere calcolata, tenendo presente che si compone di potenze dovute al lavoro da compiere, agli attriti (radenti di primo distacco, radenti o volventi) e all'inerzia (specialmente quando la massa e/o l'accelerazione o la decelerazione sono notevoli); oppure determinata sperimentalmente in base a prove, confronti con applicazioni esistenti, rillevi amperometrici o wattmetrici.

Un sovradimensionamento del motore comporta una maggiore corrente di spunto e quindi valvole fusibili e sezione conduttori maggiori; un costo di esercizio maggiore in quanto peggiora il fattore di potenza (cos g) e anche il rendimento, una maggiore sollecitazione della trasmissione, con pericoli di rottura, in quanto normalmente questa è proporzionata in base alla potenza richiesta dalla macchina e non a quella del motore.

Eventuali aumenti della potenza dei motore sono necessari solamente in funzione di elevati valori di temperatura ambiente, altitudine, frequenza di avviamento o di altre condizioni particolari.

Velocità entrata

Per naminore della velocità minima indicata a catalogo, il momento torcente relativo a un determinato rapporto di trasmissione rimane costante, quindi la potenza diminuisce proporzionalmente al diminuire della velocità.

Per n_1 variabile, fare la scelta in base a n_1 max, verificandola però anche a n_1 min.

Poiché normalmente tra motore e riduttore c'è una trasmissione a cinghia, è bene — nella scelta — esaminare diverse velocità entrata n_{N1} (il catalogo facilità questo modo di scegliere in quanto offre in un unico riquadro diverse velocità entrata n_{N1} per una determinata velocità uscita n_{2}) per trovare la soluzione tecnicamente ed economicamente migliore. Tenere presente — salvo diverse esigenze — di non entrare mai a velocità superiore a 1400 giri/min, anzi sfruttare la trasmissione ed entrare preferibilmente a una velocità inferiore a 900 giri/min.

6 - Potenze e momenti torcenti nominali

						G	Grandezza ridutt	ore		
n ₂		I _N		85	105	125	150	180	210	250
140	1 400	10	P _{N2} kW M _{N2} daN m		7,1 47,5 R 21 /10,1	11,8 80 R2I / 10,5	20 132 R2I / 11,3	33,5 224 R2I /11,8	_	
125	1 250	10	P _{N2} kW M _{N2} daN m	_	6,7 50 R 21 / 10,1	11,2 85 R2I /10,5	19 140 R2I /11,3	31,5 236 R2I /11,8	<u></u>	_
112	1 120	10	P _{N2} kW M _{N2} daN m / i	_	6,3 53 R 21 /1 0,1	10,6 90 R2I /10,5	18 150 R 21 /11,3	30 250 R2I /11,8		_
100	1 000	10	P _{N2} kW M _{N2} daN m / i	· <u>—</u>	6,3 60 R 2I / 10,1	10,6 100 R 21 /10,5	18 170 R2I /11,3	30 280 R2I /11,8		, . .
90	1.400	16	P _{N2} kW M _{N2} daN m / i	3,15 33,5 R 21 /16,3	6,3 67 R 21 / 15,8	10,6 112 R2I /15,6	18 190 R2I /16	30 315 R2I / 17,4	50 530 R2I /16,9	85 900 R 21 /15,4
	900	10	P _{N2} kW M _{N2} daN m / i		6,3 67 R 21 /10,1	10,6 112 R2I / 10,5	18 190 R2I /11,3	30 315 R 21 /11,8		
80	1 250	16	P _{N2} kW M _{N2} daN m / i	2,8 33,5 R 2I / 16,3	5,6 67 R 21 /15,8	9,5 112 R2! /15,6	16 190 R2I /16	26,5 315 R2i /17,4	45 530 R2I /1 6,9	75 900 R 21 /15,4
	800	10	P _{N2} kW M _{N2} daN m / i	<u> </u>	5,6 67 R2I /1 0,1	9,5 112 R2I /10,5	16 190 R2I /11,3	26,5 315 R2 I /11,8	_	- 175
71	1 400	20	P _{N2} kW M _{N2} daN m / i	2,36 31,5 R 21 / 20 2,65	4,75 63 R2I / 19,6 5,3	8 106 R2I /17,5	13,2 180 R2I /19,6	22,4 300 R 21 /21,1	37,5 500 R 21 /20,7	63 850 R 21 /20,7
	1 120	16	P _{N2} kW M _{N2} daN m ∕i P _{N2} kW	2,65 35,5 R 2I / 16,3	71 R2I / 15,8 5,3	118 R2I /15,6	200 R2i /16	25 335 R2I / 17,4 25	42,5 560 R2I / 16,9	71 950 R 21 / 15,4
	710	10	M _{N2} daN m	· -	71 R 21 /10,1	118 R2I /10,5	200 R2I /11,3	335 R2I /11,8		
63	1 250	20	P_{N2} kW M_{N2} kdN m $/i$	2,12 31,5 R 21 / 20 2,36	4,25 63 R2I / 19,6 4,75	7,1 106 R2I / 17,5 8	11,8 180 R2I /19,6 13,2	20 300 R2I / 21,1 22,4	33,5 500 R2i /20,7 37,5	56 850 R 21 / 20,7 63
	1 000	16	M _{N2} daN m / i P _{N2} kW	35,5 R 21 /16,3	71 R2I /15,8 4,75	118 R2I /15,6	200 R2I /16 13,2	335 R2i /17,4 22,4	560 R 21 /16,9	950 R 21 /15,4
	630	10	M _{N2} daN m ∕i		71 R 21 /10,1	118 R 21 /10,5	200 R2I /11,3	335 R2I /11,8		<u>-</u>
56	1 400	25	P _{N2} kW M _{N2} daN m	2 33,5 R 21 / 25,7 2	4 67 R 21 /25,4	6,7 112 R 2I / 23,6	11,2 190 R2I / 24,1	19 315 R2i /24	31,5 530 R 21 /25,4	53 900 R 21 /25
	1 120	20	$egin{array}{cccc} oldsymbol{P}_{N^2} & kW & \\ oldsymbol{M}_{N^2} & daNm & \\ & & /i & \\ oldsymbol{P}_{N^2} & kW & \end{array}$	33,5 R 21 /20 2,24	67 R2I /19,6 4,5	6,7 112 R2I /17,5 7,5	11,2 190 R2I /19,6 12,5	19 315 R2I /21,1	31,5′ 530 R 21 / 20,7 35,5	53 900 R 21 /20,7 60
	900 560	16 10	M _{N2} daN m / i P _{N2} kW	37,5 R 21 /16,3	75 R2I / 15,8 4,5	125 R2I /15,6 7,5	212 R2I /16 12,5	355 R2I /17,4 21,2	600 R2I /16,9	1000 R2I /15,4
	300	1 U	M _{N2} daN m	_	75 R2I /10,1	125 R2I / 10,5	212 R2I /11,3	355 R2I /11,8		
50	1 250	25	$egin{array}{cccc} oldsymbol{\mathcal{P}}_{N2} & kW & \\ oldsymbol{M}_{N2} & daNm & \\ & & /i & \\ oldsymbol{\mathcal{P}}_{N2} & kW & \end{array}$	1,8 33,5 R 21 / 25,7 1,8	3,55 67 R 21 / 25,4 3,55	6 112 R2I / 23,6 6	10 190 R2I / 24,1 10	17 315 R2I /24 17	28 530 R 21 / 25,4 28	47,5 900 R 21 /25 47,5
	1 000	20	M _{N2} daN m / i	33,5 R 21 /20	67 R2I /19,6	112 R2I /17,5	190 R 21 /19,6	315 R 21 /21,1	530 R 21 /20,7	900 R 21 /20,7
	800	16	P _{N2} kW M _{N2} daN m	2 37,5 R 21 / 16,3	4 75 R 2I / 15,8	6,7 125 R2I / 15,6	11,2 212 R2I / 16	19 355 R2i / 17,4	31,5 600 R2I / 16,9	53 1000 R2I /15,4

Per $n_{\rm N1}$ maggiori di 1 400 giri/min oppure minori di 355 giri/min ved. cap. 5.

6 - Potenze e momenti torcenti nominali

						Gr	andezza ridut	tore	· · · · · · · · · · · · · · · · · · ·	<u> </u>
	<i>n</i> _{N1} ∕min	I _N		85	105	125	150	180	210	250
45	1 120	25	P _{N2} kW M _{N2} daN m ∴ / i P _{N2} kW	1,7 35,5 R 2I / 25,7 1.7	3,35 71 R 21 /25,4 3,35	5,6 118 R2I /23,6 5,6	9,5 200 R 21 / 24,1 9,5	16 335 R2I / 24 16	26,5 560 R 21 / 25,4 26,5	45 950 R21 / 25 45
ar i	710	16	M_{N2} daN m / i P_{N2} kW M_{N2} daN m / i	35,5 R 21 /20 1,9 40 R 21 /16,3	71 R 21 / 19,6 3,75 80 R 21 / 15,8	118 R2I / 17,5 6,3 132. R2I / 15,6	200 R2I /19,6 10,6 224 R2I /16	335 R2I /21,1 18 375 R2I /17,4	560 R 21 /20,7 30 630 R 21 /16,9	950 R2I /20,7 50 1060 R2I /15,4
40	1.000	25	P _{N2} kW M _{N2} daN m	1,5 35,5 R 21 / 25,7	3 71 R 21 /25,4	5 118 R 21 /23,6	8,5 200 R2I /24,1	14 335 R2I / 24	23,6 560 R2I /25,4	40 950 R 21 /25
	800 630	20 16	P _{N2} kW M _{N2} daN m / i P _{N2} kW M _{N2} daN m	1,5 35,5 R 21 /20 1,7 40	3 71 R2I / 19,6 3,35	118 118 R2I / 17,5 5,6 132	8,5 200 R2I / 19,6 9,5 224	14 335 R2I /21,1 16 375	23,6 560 R 21 / 20,7 26,5 630	40 950 R2I / 20,7 45 1060
35,5	900	25	/ i P _{N2} kW M _{N2} daN m	1,4 37,5	2,8 75	4,75 125	8 212	R2I / 17,4 13,2 355	22,4 600	37,5 1000
	710	20	/ i P _{N2} kW M _{N2} daN m / i	1,4 37,5 R 21 /20	R 21 /25,4 2,8 75 R 21 /19,6	R21 /23,6 4,75 125 R21 /17,5	R 21 /24,1 8 212 R 21 /19,6	R2I /24 13,2 355 R2I /21,1	22,4 600 R2I /20,7	R 21 /25 37,5 1000 R 21 /20,7
	560	16	P_{N2} kW M_{N2} daN m $/i$	1,6 42,5 R2I /16,3	3,15 85 R 21 / 15,8	5,3 140 R 21 / 15,6 4,25	9 236 R2I /16	15 400 R2I / 17,4 11.8	25 670 R2I / 16,9	42,5 1120 R2I /15,4
31,5	800 630	25 20	M_{N2} daN m $/i$ P_{N2} kW M_{N2} daN m	37,5 R 21 /25,7 1,25 37,5	75 R 21 /25,4 2,5 75	125 R2I / 23,6 4,25 125	7,1 212 R2I /24,1 7,1 212	355 R 21 /24 11,8 355	600 R2I /25,4 20 600	33,5 1000 R2I / 25 33,5 1000
٠.	500	16	/ i P _{N2} kW M _{N2} daN m / i	R 21 /20 1,4 42,5 R 21 /16,3	R 21 /19,6 2,8 85 R 21 /15,8	R2I /17,5 4,75 140 R2I /15,6	R2I /19,6 8 236 R2I /16	R2I /21,1 13,2 400 R2I /17,4	R 21 /20,7 22,4 670 R 21 /16,9	R 21 /20,7 37,5 1120 R 21 /15,4
28	710	25	P _{N2} kW M _{N2} daN m	1,12 37,5 R 21 /25,7	2,24 75 R 21 / 25,4	3,75 125 R21 /23,6	6,3 212 R2I /24,1	10,6 355 R 2I /24	18 600 R 21 /25,4	30 1000 R 21 /25
	560 450	20 16	P _{N2} kW M _{N2} daN m / i P _{N2} kW M _{N2} daN m	1,12 37,5 R 21 / 20 1,25 42,5	2,24 75 R2I / 19,6 2,5 85	3,75 125 R2I / 17,5 4,25 140	6,3 212 R2I / 19,6 7,1 236	10,6 355 R2I / 21,1 11,8 400	18 600 R2I / 20,7 20 670	30 1000 R 21 / 20,7 33,5 1120
25	630	25	/ i P _{N2} kW M _{N2} daN m / i	R 21 /16,3 1 37,5 R 21 /25,7	R 2I /15,8 2 75 R 2I /25,4	3,35 125 R 21 /23,6	6 212 R2I /24,1	9,5 355 R 21 /24	16 600 R 21 /25,4	26,5 1000 R21 /25
	500	20	P _{N2} kW M _{N2} daN m / i P _{N2} kW	1 37,5 R 21 /20 1,12	2 75 R2I / 19,6 2,24	3,35 125 R2I / 17,5 3,75	6 212 R2I / 19,6 6,7	9,5 355 R2I /21,1 10,6	16 600 R 21 / 20,7 18	26,5 1000 R 21 /20,7 30
	400	16	M _{N2} daN m ∴ /i	42,5 R2I /16,3	85 R2I /15,8	140 R2I /15,6	236 R2I /16	400 R2I /17,4	670 R2I /16,9	1120 R2I /15,4
22,4	560	25	P_{N2} kW M_{N2} daN m / i P_{N2} kW	0,95 40 R 21 / 25,7 0,95	1,9 80 R 21 / 25,4	3,15 132 R2I /23,6 3,15	5,3 224 R 21 / 24,1 5,3	9 375 R2I /24	15 630 R 21 / 25,4	25 1060 R 21 / 25 25
	450 355	16	M _{N2} daN m / i P _{N2} kW M _{N2} daN m / i	40 R 21 /20 1,06 45 R 21 /16,3	80 R21 / 19,6 2,12 90 R21 / 15,8	132 R21 /17,5 3,55 150 R21 /15,6	224 R21 /19,6 6 250 R21 /16	375 R2I /21,1 10 425 R2I /17,4	630 R21 /20,7 17 710 R21 /16,9	1060 R2I /20,7 28 1180 R2I /15,4
20	500	25	P _{N2} kW M _{N2} daN m ∴ /i	0,85 40 R 21 /25,7	1,7 80 R 21 /25,4	2,8 132 R 21 /23,6	4,75 224 R2I /24,1	8 375 R 21 /24	13,2 630 R2I /25,4	22,4 1060 R2I /25
	400	20	P _{N2} kW M _{N2} daN m / i	0,85 40 R 21 /20	1,7 80 R2I /19,6	2,8 132 R 21 /1 7,5	4,75 224 R2I /19,6	8 375 R 21 /21,1	13,2 630 R2I /20,7	22,4 1060 R2I /20,7

Per $n_{\rm N1}$ maggio i di 1 400 giri/min oppure minori di 355 giri/min ved. cap. 5.

6 - Potenze e momenti torcenti nominali

						Grandez	za riduttore			*
n ₂		i _N	-	85	105	125	150	180	210	250
18	450	25	P _{N2} kW M _{N2} daN m i	0,75 40 R 21 /25,7	1,5 80 R 21, /25,4	2,5 132 R2I / 23,6	4,25 224 R2I / 24,1	7,1 375 R 21 /24	11,8 630 R2I /25,4	20 1060 R 21 /25
,	355	20	P _{N2} kW M _{N2} daN m /i	0,75 40 R2I /20	1,5 80 R2i /19,6	2,5 132 R2I / 17,5	4,25 224 R21 /19,6	7,1 375 R2I / 21, 1	11,8 630 R21 /20,7	20 1060 R2I /20,7
16	400	25	P _{N2} kW M _{N2} daN m /i	0,67 40 R2I /25,7	1,32 80 R 21 /25,4	2,24 132 R 21 /23,6	3,75 224 R2I /24,1	6,3 375 R 21 /24	10,6 630 R2I /25,4	18 1060 R21 /25
14	355	25	P _{N2} kW M _{N2} daN m ∴ / i	0,6 40 R 21 /25,7	1,18 80 R 21 /25,4	2 132 R2I /23,6	3,35 224 R2I /24,1	⇒ 5,6 375 R2I /24	9,5 630 R 21 /25,4	16 1060 R 21 /25

Per n_{N1} maggiori di 1 400 giri/min oppure minori di 355 giri/min ved. cap. 5

Riepilogo rapporti di trasmissione i, momenti torcenti nominali M_{N2} [daN m] validi per $n_1 \leq 90$ giri/min.

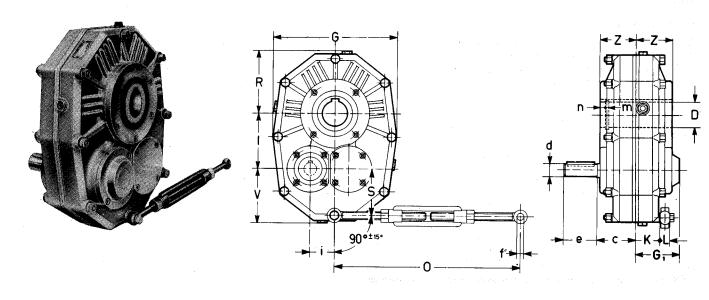
Rotismo	i _N		Grandezza riduttore									
	·	85	105	125	150	180	210	250				
R 21	10 16 20 25	16,3 45 20 42,5 25,7 42,5	10,1 90 15,8 90 19,6 85 25,4 85	10,5 150 15,6 150 17,5 140 23,6 140	11,3 250 16 250 19,6 236 24,1 236	11,8 425 17,4 425 21,1 400 24 400	16,9 710 20,7 670 25,4 670	- 15,4 1180 20,7 1120 25 1120				

7 - Carichi radiali $^{\circ}$ \emph{F}_{r1} [daN] sull'estremità d'albero veloce

Quando il collegamento tra motore e riduttore è realizzato con una trasmissione che genera carichi radiali sull'estremità d'albero, è necessario verificare che questi siano minori o uguali a quelli indicati in tabella.

Per i casi di trasmissioni più comuni, il carico radiale F_{r1} è dato dalle formule seguenti:

$$F_{\rm rl} = \frac{2.865 \cdot P_1}{d \cdot n_1}$$
 [daN] per trasmissione a cinghia dentata


$$F_{rl} = \frac{4775 \cdot P_f}{d \cdot n_1}$$
 [daN] per trasmissione a cinghie trapezoidali (ved. cap. 10 «trasmissioni a cinghia e carichi radiali»).

dove: P_1 [kW] è la potenza richiesta all'entrata del riduttore, n_1 [giri/min] è la velocità angolare, d [m] è il diametro primitivo. I carichi radiali ammessi in tabella valgono per carichi agenti in mezzeria dell'estremità d'albero veloce cioè ad una distanza dalla battuta di 0,5 • e (e = lunghezza dell'estremità d'albero); se agiscono a 0,315 • e moltiplicarli per 1,25; se agiscono a 0,8 • e moltiplicarli per 0,8.

Velocità angolare			Grandezz	a riduttore		And the second second		
n ₁ giri/min	85	105	125	150	180	210	250	
1 400	53	85	118	170	300	425	600	
1 120	56	90	125	180	315	450	630	
900	60	95	132	190	335	475	670	
710	67	106	150	212	375	530	750	
560	71	112	160	224	400	560	800	
450	75	118	170	236	425	600	850	
355	85	132	190	265	475	670	950	

¹⁾ Contemporaneamente al carico radiale può agire un carico assiale fino a 0.2 volte quello di tabella. Per valori superiori interpellateci.

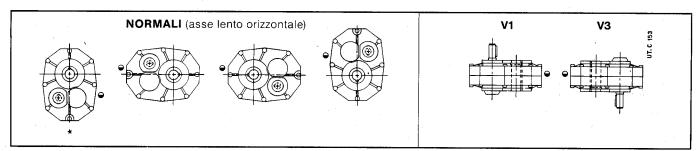
Esecuzione

normale

OP1A

antiretro rotazione libera oraria 1)

OPIB


antiretro rotazione libera antioraria 1) O P

Gran- dezza	С	D Ø H7	d Ø	е	f Ø	G	G₁	ı	i	K	L	m	n	0	R	S	٧	Z	Massa kg	Quantità d'olio I
85 105 125	61 69 78	38 45 55	19 24 28	40 50 60	12 12 16	212 240 270	58 76 86	81,7 100,6 120,3	39 44,6 53	35 44 52	14 14 17	1,6 1,9 2,2	6 6				93,5 100 120	59 67 76	17 27 40	0,54 0,9 1,5
150 180 210 250	86 101,5 121 138	60 70 85	38 42 48 55	80 110 110	16 22 22 28	330 396 477 560	101 116,5 132 150	145 174,5 202,7 240,6	65 80 95	57 67 84 96	17 24 24 30	2,2 2,7 3,2 3,2	8 8 8	410÷540 580÷710 580÷710 580÷750	200 234	131 157	133 156 188 217	84,5 100 119,5 137	67 110 170 250	2,4 4 7,3

¹⁾ Guardando il riduttore lato opposto albero veloce.

Le quantità d'olio indicate valgono per la forma costruttiva normale*; per le altre forme costruttive possono anche raddoppiare.

Forme costruttive

 [←] Livello

^{*} Salvo diversa indicazione i riduttori vengono forniti in questa forma costruttiva la quale, in quanto normale, non va indicata nella designazione; le altre tre forme costruttive normali sono ottenibili dall'Acquirente invertendo i tappi. Le forme costruttive V1 e V3 hanno un sovrapprezzo.

9 - Dettagli costruttivi e funzionali

Rendimento η : 0,96

Sovraccarichi

Quando il riduttore è sottoposto a elevati sovraccarichi statici e dinamici si presenta la necessità di verificare che il valore di questi sovraccarichi sia sempre inferiore a $2 \cdot M_{N2}$ (cap. 6).

Normalmente si generano sovraccarichi quando si hanno:

- avviamenti a pieno carico (specialmente per elevate inerzie e bassi rapporti di trasmissione);
- frenature:
- urti;
- casi di riduttori in cui l'asse lento diventa motore per effetto delle inerzie della macchina azionata;
- potenza applicata superiore a quella richiesta;
- altre cause statiche o dinamiche.

Qui di seguito diamo alcune considerazioni generali su questi sovraccarichi e, per alcuni casi tipici, delle formule per la loro valutazione.

Quando non è possibile valutarli inserire dispositivi di sicurezza in modo da non superare mai 2 \cdot M_{N2} .

Momento torcente di spunto

Quando l'avviamento è a pieno carico (specialmente per elevate inerzie e bassi rapporti di trasmissione), verificare che $2 \cdot M_{N2}$ sia maggiore o uguale al momento torcente di spunto il quale può essere calcolato con la formula:

$$M_2$$
spunto = $\left(\frac{M \text{ spunto}}{M_N} \cdot M_2 \text{ disponibile} - M_2 \text{ richiesto}\right) \frac{J}{J+J_0} + M_2 \text{ richiesto}$

dove:

 $\frac{\textit{M}}{\textit{spunto}}$ è il rapporto fra il momento torcente di spunto e quello nominale del motore; \textit{M}_{N}

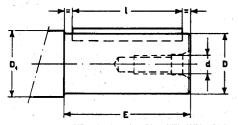
 M_2 richiesto è il momento torcente assorbito dalla macchina per lavoro e attriti;

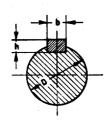
 M_2 disponibile è il momento torcente uscita dovuto alla potenza nominale del motore;

J $ar{f b}$ il momento d'inerzia (di massa) esterno (riduttore: trascurabile; pulegge; giunti; macchina azionata) in kg m², riferito all'asse del motore;

 J_0 è il momento d'inerzia (di massa) del motore.

NOTA: quando si vuole verificare che il momento torcente di spunto sia sufficientemente elevato per l'avviamento considerare, nella valutazione di M2 richiesto eventuali attriti di primo distacco.


Capacità di carico dispositivo antiretro


Il momento torcente nominale $M_{\rm N1}$ del dispositivo antiretro (montato sull'asse veloce) è:

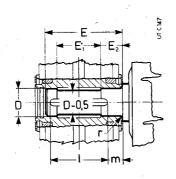
grandezza riduttore 85 105 125 150 180 210 250 M_{N1} [daN m] 3 7,4 7,4 32,4 32,4 32,4 56

Sovraccarico massimo ammissibile 1,7 · M_{N1}.

Estremità d'albero

Estremità d'albero veloce

	Estrem	ità d'alber	0		Linguetta	Cava				
	D E		E d ø		bxhxl	b	t	t,		
19 24 28 38 42 48 55	j 6 j 6 k 6 k 6 k 6 m 6	40 50 60 80 110 110	M 6 M 8 M 8 M 10 M 12 M 12 M 12	20 25 30 40 45 50	6 x 6 x 36 8 x 7 x 45 8 x 7 x 45 10 x 8 x 70 12 x 8 x 90 14 x 9 x 90 16 x 10 x 90	6 8 10 12 14	3,5 4 4 5 5,5 6	21,7 27,2 31,2 41,3 45,3 51,8 59,3		


Albero lento cavo

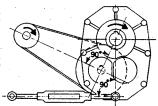
Foro	Linguetta	Cava						
D Øн7	bxhxl*	b	t	t ₁				
38 45 55	10 x 8 x 90 14 x 9 x 100 16 x 10 x 125	10 14 16	5 5,5 6	41,3 48,8 59,3				
60 70 85	18 x 11 x 140 20 x 12 x 160 22 x 14 x 180	18 20 22	7 7,5 9	64,4 74,9 90,4				
100	28 x 16 x 220	,28	10	106,4				

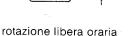
^{*} Lunghezza raccomandata

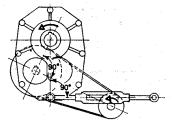
Perno macchina

Per il perno delle macchine sul quale va calettato l'albero cavo del riduttore raccomandiamo le dimensioni riportate nella tabella a fianco. Il diametro del perno della macchina in battuta contro il riduttore deve essere (1,12 ÷ 1,25) · D. Per altri dati vedere cap. 10.

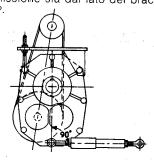

Grandezza riduttore	D Ø H 7/h6,j6,k6	E	Εı	E ₂	. 1	m	r
85 105 125	38 45 55	103 118 135	54 57 66	26 32 36	90 1 00 125	7 9 5	1
150 180 210 250	60 70 85 100	149 179 212 246	68 90 115 120	43 47 51 66	140 160 180 220	5 10 16 13	1,5 1,5 1,5


10 - Installazione e manutenzione


Montare il riduttore in modo che non subisca vibrazioni. Nel caso si prevedano sovraccarichi di lunga durata, urti o pericoli di bloccaggio installare salvamotori, limitatori elettronici di momento torcente, giunti idraulici, di sicurezza, unità di controllo o altri dispositivi similari.


Ancorare il riduttore in modo che il braccio di reazione lavori a trazione (senso di rotazione libero albero lento orario: braccio di reazione a sinistra, antiorario: a destra) e formi con la retta passante per i centri dell'albero lento e dell'attacco del braccio stesso, un angolo di 90° (tolleranza ±15°).

Quando il braccio di reazione serve anche per tendere le cinghie è preferibile che la trasmissione sia dal lato del braccio di reazione e formi, con la retta passante per i centri degli alberi lento e veloce, un angolo di 90°.



rotazione libera antioraria

braccio di reazione elastico

Montaggio

Smontaggio

Per i riduttori con dispositivo antiretro, controllare — prima dell'avviamento — che ci sia corrispondenza tra i sensi di rotazione dell'a macchina da azionare, del riduttore e del motore.

Per il foro degli organi calettati sull'estremità dell'albero veloce, raccomandiamo la tolleranza H7; per estremità d'albero con D≥38 mm purchè il carico sia uniforme e leggero, la tolleranza può essere G7. Altri dati secondo tabella «Estremità d'albero veloce» (cap. 9).

Prima di procedere al montaggio pulire bene e lubrificare le superficie di contatto per evitare il pericolo di grippaggio e l'ossidazione di contatto.

II montaggio e lo smontaggio si effettuano con l'ausilio di tiranti ed estrattori servendosi del foro filettato in testa all'estremità d'albero; per accoppiamenti H7/m6 (D \geqslant 55 mm) è consigliabile effettuare il montaggio a caldo riscaldando l'organo da calettare a 80 \div 100 °C.

Per il montaggio e lo smontaggio dei riduttori procedere come raffigurato a fianco.

Per il fissaggio assiale dei riduttori si può adottare il sistema raffigurato a fianco. Quando il perno della macchina è senza battuta (metà inferiore del disegno) si può interporre un distanziale tra l'anello elastico e il perno stesso.

A richiesta si può fornire (ved. cap. 11) la rosetta di montaggio, smontaggio e fissaggio assiale riduttore (dimensioni indicate in tabella). Le parti a contatto con l'anello elastico devono essere a spigolo vivo.

Grandezza riduttore	. A	D Ø h11	D ₁ Ø	F	F ₁	h	n	Vite fissaggio assiale UNI 5737-65
85 105 125 150 180 210 250	18 23 29 30 36 49 56	38 45 55 60 70 85 100	27 32 41 45 54 67 81	M8 M10 M12 M12 M16 M20 M24	M6 M6 M8 M10 M12 M12 M16	12 12 14 16 19 19	6 6 8 8 8 11	M8 x 30 M10 x 35 M12 x 40 M12 x 40 M16 x 50 M20 x 60 M24 x 70

Per il perno delle macchine sul quale va calettato l'albero cavo del riduttore, raccomandiamo le tolleranze h6, j6 oppure k6 secondo le esigenze. Altri dati secondo tabella «Albero lento cavo» e «Perno macchina» (cap. 9).

Fissaggio assiale

nice anticorrosiva, proteggendolo eventualmente legli anelli di tenuta).

accorgimenti dall'irraggiamento solare e dalle veloce sono verticali

Per installazione all'aperto verniciare il riduttore o motoriduttore con vernice anticorrosiva, proteggendolo eventualmente anche con grasso idrorepellente (specie in corrispondenza delle sedi rotanti degli anelli di tenuta). Quando è possibile, proteggere il riduttore o motoriduttore con opportuni accorgimenti dall'irraggiamento solare e dalle intemperie: quest'ultima protezione diventa necessaria quando gli assi lento o veloce sono verticali.

Per temperatura ambiente maggiore di 40 °C o minore di 0 °C interpellarci.

Lubrificazione

La lubrificazione degli ingranaggi è a bagno d'olio. I cuscinetti sono lubrificati a bagno d'olio o a sbattimento eccetto i cuscinetti superiori, forma costruttiva V1 e V3, i quali sono lubrificati con pompa o con grasso «a vita» (con o senza anello NILOS secondo la velocità).

I riduttori vengono forniti **senza olio**; occorre quindi, prima di metterli in funzione, immettere fino a livello, **olio minerale** (AGIP Blasia, ARAL Degol BG, BP-Energol GR-XP, ESSO Spartan EP, IP Mellana oil, MOBIL Mobilgear 600, SHELL Omala, TEXACO Meropa, TOTAL Carter EP) avente la gradazione di viscosità ISO indicata in tabella.

Orientativamente l'intervallo di lubrificazione, in assenza di inquinamento dall'esterno, è quello indicato in tabella. Per sovraccarichi forti dimezzare i valori.

Gradazione di viscosità ISO

Valore medio [cSt] della viscosità cinematica a 40 °C

Velocità n ₂	Temperatura ambiente 1)					
giri/min	0 ÷ 20 °C 10 - : 40 °					
> 22,4	150	220				
22,4 ÷ 5,6	220	320				
< 5,6	320	460				

1) Sono ammesse punte di temperatura ambiente di 10 °C in meno o in più.

Temperatura olio [º C]	Intervallo di lubrificazione [h]
≤ 65	8 000
65 ÷ 80	4 000
80 ÷ 95	2 000

10 - Installazione e manutenzione

Trasmissioni a cinghia e carichi radiali

Nella tabella sono indicati, per le varie potenze e polarità motore, le pulegge motrici raccomandate e i carichi radiali risultanti sulle estremità d'albero del motore e del riduttore.

Le trasmissioni sono state calcolate in base a un fattore di servizio di almeno 1,4; i carichi radiali sono stati calcolati in base alla formula 4 775 • P1 (vad. cap. 7)

 $\frac{773 \cdot P_1}{d \cdot n_1}$ (ved. cap. 7).

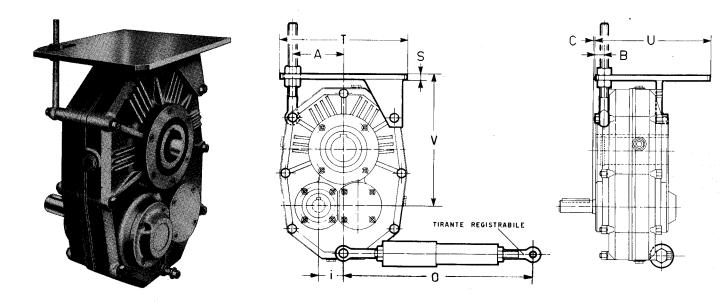
Il carico radiale F_{11} , corrispondente alla puleggia motrice scelta, deve essere minore o uguale a quello ammesso nella tabella del cap. 7. **IMPORTANTE:** per il buon funzionamento della trasmissione e per non sovraccaricare i cuscinetti del motore e del riduttore, ridurre al minimo lo sbalzo e non tendere eccessivamente le cinghie.

nuune	a: minim	0 10	J SDAIZO	e non	tender	e eccess		aure le c	ingnie.								
N	/lotore	,		Pule	ggia mot	rice: num	nero e	sezione	cinghia,	diame	tro primit	ivo d imn	n].	Carico ra	idiale <i>F</i> ri[daN]	
P 1 kW	Grandez e n. pol	- 1		đ	<i>F</i> _{r1} ≈		d	<i>F</i> _{r1} ≈		đ	F _{r1} ≈		d	F _{r1} ≈		d	. F r1 ≈
0,55		4 6	2 Z 2 Z	71 80	26,5 37,5	2 Z 2 Z	80 90	23,6 33,5	1 Z 2 Z	90 100	21,2 30	1 Z 2 Z	100 112	19 [°] 26,5	1 Z 2 Z	112 125	17 23,6
0,75	80 B	2 4 6	2 Z 2 Z 2 A	71 71 90	18 35,5 45	2 Z 2 Z 2 A	80 80 100	16 31,5 40	1 Z 2 Z 1 A	90 90 112	14 28 35,5	1 Z 2 Z 1 A	100 100 125	12,5 25 31,5	1 Z 1 Z 1 A	112 112 140	11,2 22,4 28
1,1	90 S	2 4 6	2 Z 2 A 2 A	71 90 90	26,5 42,5 67	2 Z 2 A 2 A	80 100 100	23,6 37,5 60	2 Z 2 A 2 A	90 112 112	21,2 33,5 53	1 Z 1 A 2 A	100 125 125	19 30 47,5	1 Z 1 A 1 A	112 140 140	17 26,5 42,5
1,5	90 L	2 4 6	2 A 2 A 3 A	90 90 90	28 56 90	2 A 2 A 3 A	100 100 100	25 50 80	1 A 2 A 2 A	112 112 112	22,4 45 71	1 A 2 A 2 A	125 125 125	20 40 63	1 A 1 A 2 A	140 140 140	18 35,5 56
2,2		2 4 6	2 A 3 A 3 A	90 90 112	42,5 85 106	2 A 3 A 3 A	100 100 125	37,5 75 95	2 A 3 A 3 A	112 112 140	33,5 67 85	2 A 2 A 2 A	125 125 160	30 60 75	1 A 2 A 2 A	140 140 180	26,5 53 67
3	100 L	2 4 6	3 A 3 A 3 SPA	90 112 100	56 90 160	3 A 3 A 3 SPA	100 125 112	50 80 140	2 A 2 A 2 SPA	112 140 125	45 71 125	2 A 2 A 2 SPA	125 160 140	40 63 112	2 A 2 A 2 SPA	140 180 160	35,5 56 100
4	112 M 3 112 M 4 132 Mr 6	4"	3 A 3 A 3 SPA	100 125 112	67 106 190	3 A 3 A 3 SPA	112 140 125	60 95 170	2 A 3 A 2 SPA	125 160 140	53 85 150	2 A 2 A 2 SPA	140 180 160	47,5 75 132	2 A 2 A 2 SPA	160 200 180	42,5 67 118
5,5	132 S	2 4 6	3 SPA 3 SPA 3 SPA	112	95 170 212	3 SPA 3 SPA 3 SPA	125	85 150 190	2 SPA 2 SPA 2 SPA	140	75 132 170	2 SPA 2 SPA 2 SPA	160	67 118 150	2 SPA 2 SPA 2 SPA	180	60 106 132
7,5	132 M	2 4 6	3 SPA 3 SPA 3 SPA	1251)	112 200 250	3 SPA 3 SPA 3 SPA	140	100 180 224	2 SPA 2 SPA 3 SPA	160	90 160 200	2 SPA 2 SPA 2 SPA	180	80 140 180	2 SPA 2 SPA 2 SPA	200	71 125 160
11	160 M	2 4 6	3 SPA 3 SPA 3 SPA	160	150 236 300	3 SPA 3 SPA 3 SPA	180	132 212 265	2 SPA 3 SPA 3 SPA	200	118 190 236	2 SPA 2 SPA 2 SPA	224	106 170 212	2 SPA 2 SPA 2 SPA	250	95 150 190
15	160 L	2 4 6	3 SPA 3 SPA 4 SPA	180	180 280 400	3 SPA 3 SPA 4 SPA	200	160 250 355	3 SPA 3 SPA 4 SPA	224	140 224 315	2 SPA 3 SPA 3 SPA	250	125 200 280	2 SPA 2 SPA 3 SPA	280	112 180 250
18,5	160 L 180 M 200 Lr		3 SPA 4 SPA 4 SPB	180	200 355 500	3 SPA 4 SPA 4 SPB	200	180 315 450	3 SPA 4 SPA 3 SPB	224	160 280 400	3 SPA 3 SPA 3 SPB	250	140 250 355	2 SPA 3 SPA 3 SPB	280	224
22	180 L	2 4 6	4 SPA 4 SPA 4 SPB	200	236 375 530	4 SPA 4 SPA 4 SPB	224	212 335 475	3 SPA 4 SPA 3 SPB	250	190 300 425	3 SPA 3 SPA 3 SPB	280	170 265 375	3 SPA 3 SPA 3 SPB	315	150 236 335
30		4 6	4 SPB 5 SPB		450 630	4 SPB 5 SPB		400 560	3 SPB 4 SPB		355 500	3 SPB 4 SPB		315 450	3 SPB 4 SPB		280 400
37	250 M	4 6	5 SPB 6 SPB	250	560 800	5 SPB 6 SPB	280	500 710	4 SPB 5 SPB	315	450 630	4 SPB 5 SPB	355	400 560	4 SPB 5 SPB	400	355 500
45	· · · · · · · · · · · · · · · · · · ·	4	5 SPB		600	5 SPB		530	4 SPB		475	4 SPB	···	425	4 SPB		375
55	250 M	4	6 SPB	250	750	6 SPB	280	670	5 SPB	315	600	5 SPB	355	530	5 SPB	400	475

¹⁾ Non valido per motore grandezza 132L 4 potenza 9,2 kW: d ≥140 mm.

Larghezza fascia pulegge: 1 Z 16, 2 Z 28; 1 A 20, 2 A-2 SPA 35, 3 A-3 SPA 50, 4 SPA 65; 3 SPB 63, 4 SPB 82, 5 SPB 101, 6 SPB 120.

11 - Esecuzioni speciali ed accessori


Sopporto motore e braccio di reazione elastico

I riduttori pendolari possono essere forniti con sopporto motore a cerniera (grandezza motore indicata in tabella). In questo caso il braccio di reazione può essere sostituito da una semplice staffa.

Descrizione aggiuntiva alla designazione per l'ordinazione: sopporto motore.

I riduttori pendolari grandezze 125 ... 250 possono essere forniti con braccio di reazione elastico per attutire gli urti; è possibile installare dispositivi di sicurezza contro sovraccarichi accidentali.

Descrizione aggiuntiva alla designazione per l'ordinazione: braccio di reazione elastico.

Grandezza riduttore	Massima grandezza motore	grandezza . A B C i		0	s	Т	U	V		
85 105 125	100 L B3 112 M B3 132 M B3	84 94 108	15 15 18,5	4 3 0	39 44,6 53	 410 ÷ 510	8 8 10	215 230 265	220 230 290	210 245 280
150 180 210 250	160 M B3 180 M B3 200 L B3 225 M B3	135 163 194 233	18,5 20 25 25	2 6 0 5	65 80 95	410 ÷ 510 580 ÷ 680 580 ÷ 680 580 ÷ 680	10 12 14 16	320 380 455 530	350 390 470 500	335 400 465 540

Per le dimensioni mancanti ved. cap. 8.

Rosetta albero lento cavo

Tutti i riduttori possono essere forniti di rosetta, anello elastico e vite per il fissaggio assiale (ved. cap. 10). Descrizione aggiuntiva alla **designazione** per l'ordinazione: **rosetta albero lento cavo.**

Varie

- Verniciatura e anelli di tenuta speciali.

12 - Formule tecniche

Formule principali, inerenti le trasmissioni meccaniche, secondo il Sistema Tecnico e il Sistema Internazionale di Unità (SI).

tempo di avviamento o di arresto, in funzione di una accelerazione o decelerazione, di un momento di

avviamento o di frenatura velocità nel moto rotatorio

velocità angolare

accelerazione o decelerazione in funzione di un tempo di avviamento o di arresto

accelerazione o decelerazione angolare in funzione di un tempo di avviamento o di arresto, di un momento di avviamento o di frenatura

spazio di avviamento o di arresto, in funzione di una accelerazione o decelerazione, di una velocità finale o iniziale.

angolo di avviamento o di arresto, in funzione di una accelerazione o decelerazione angolare, di una velocità angolare finale o iniziale

massa

peso (forza peso)

forza nel moto traslatorio verticale (sollevamento), orizzontale, inclinato (μ=coefficiente di attrito; φ = angolo d'inclinazione)

momento dinamico Gd², momento d'inerzia J dovuto ad un moto traslatorio (numericamente $J = \frac{Gd^2}{A}$)

momento torcente in funzione di una forza, di un momento dinamico o di inerzia, di una potenza

lavoro, energia nel moto traslatorio, rotatorio

potenza nel moto traslatorio, rotatorio

potenza resa all'albero di un motore monofase (cosφ=fattore di potenza)

potenza resa all'albero di un motore trifase

Con unità

Sistema Tecnico

$$t = \frac{Gd^2 \cdot n}{375 \cdot M} [s]$$

$$v = \frac{\pi \cdot d \cdot n}{60} = \frac{d \cdot n}{19.1} [m/s]$$

$$n = \frac{60 \div v}{\pi \cdot d} = \frac{19,1 \cdot v}{d} [giri/min]$$

 $t = \frac{v}{2} [s]$

$$t = \frac{J \cdot \omega}{M} [s]$$

Con unità

$$v = \omega \cdot r \text{ [m/s]}$$

$$\omega = \frac{v}{r} [rad/s]$$

$$a = \frac{v}{t} [m/s^2]$$

$$\alpha = \frac{n}{9.55 \cdot t} \left[rad/s^2 \right]$$

$$\alpha = \frac{39.2 \cdot M}{Gd^2} [rad/s^2]$$

$$\alpha = \frac{\omega}{t} [rad/s^2]$$

$$\alpha = \frac{M}{J} [rad/s^2]$$

$$s = \frac{a \cdot t^2}{2} [m]$$

$$s = \frac{v \cdot t}{2}$$
 [m]

$$\phi = \frac{\alpha \cdot t^2}{2} \text{ [rad]}$$

$$\varphi = \frac{n \cdot t}{19.1} [rad]$$

$$m = \frac{G}{g} \left[\frac{kgf \, s^2}{m} \right]$$

G è l'unità di peso (forza peso) [kgf]

F = G [kgf]

 $F = \mu \cdot G \text{ [kgf]}$

 $F = G (\mu \cdot \cos \varphi + \sin \varphi) [kgf]$

 $\varphi = \frac{\omega \cdot t}{2} [rad]$

m è l'unità di massa [kg]

 $G = m \cdot g [N]$

 $F = m \cdot g [N]$

 $F = \mu \cdot m \cdot g [N]$

 $F = m \cdot g \, (\mu \cdot \cos \phi + \sin \phi) \, [N]$

$$Gd^2 = \frac{365 \cdot G \cdot V^2}{n^2} \left[kgf \ m^2 \right]$$

$$M = \frac{F \cdot d}{2} \text{ [kgf m]}$$

$$M = \frac{Gd^2 \cdot n}{375 \cdot t} \text{ [kgf m]}$$

$$M = \frac{716 \cdot P}{n} \text{ [kgf m]}$$

 $W = \frac{G \cdot v^2}{19.6} \text{ [kgf m]}$

$$W = \frac{Gd^2 \cdot n^2}{7160} [kgf m]$$

 $P = \frac{F \cdot v}{7F} [CV]$

$$P = \frac{M \cdot n}{716} [CV]$$

 $P = \frac{U \cdot I \cdot \eta \cdot \cos \varphi}{736} [CV]$

$$J = \frac{m \cdot v^2}{\omega^2} \text{ [kg m}^2\text{]}$$

$$M = F \cdot r [N m]$$

$$M = \frac{J \cdot \omega}{t} [N m]$$

$$M = \frac{P}{\omega} [N m]$$

$$W = \frac{m \cdot v^2}{2} [J]$$

$$W = \frac{J \cdot \omega^2}{2} [J]$$

$$P = F \cdot v [W]$$

$$P = M \cdot \omega \text{ [W]}$$

$$P = U \cdot I \cdot \eta \cdot \cos \varphi \ [W]$$

$$P = 1.73 \cdot U \cdot I \cdot \eta \cdot \cos \varphi \ [W]$$

Nota, L'accelerazione o decelerazione si sottintendono costanti; i moti traslatorio e rotatorio si sottintendono rispettivamente rettilineo e circolare.

Rossi S.p.A. Via Emilia Ovest 915/A 41123 Modena - Italy

Phone +39 059 33 02 88

info@rossi.com www.rossi.com

© Rossi S.p.A. Rossi reserves the right to make any modification whenever to this publication contents. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described.

The Customer is responsible for the correct selection and application of product in view of its industrial and/or commercial needs, unless the use has been recommended by technical qualified personnel of Rossi, who were duly informed about Customer's application purposes. In this case all the necessary data required for the selection shall be communicated exactly and in writing by the Customer, stated in the order and confirmed by Rossi. The Customer is always responsible for the safety of product applications. Every care has been taken in the drawing up of the catalog to ensure the accuracy of the information contained in this publication, however Rossi can accept no responsibility for any errors, omissions or outdated data. Due to the constant evolution of the state of the art, Rossi reserves the right to make any modification whenever to this publication contents. The responsibility for the product selection is of the Customer, excluding different agreements duly legalized in writing and undersigned by the Parties.